THE CHINESE UNIVERSITY OF HONG KONG
 MATH3270B HOMEWORK4 SOLUTION

By Picard's method, we have $\varphi_{n}(t)=\int_{0}^{t} 3 t^{2}\left(1+\varphi_{n-1}(s)\right) d s$. We choose $\varphi_{0}=0$ and calculate each term.

$$
\begin{align*}
& \varphi_{1}=\int_{0}^{t} 3 s^{2}(1+0) d s=t^{3} \\
& \varphi_{2}=\int_{0}^{t} 3 s^{2}\left(1+s^{3}\right) d s=t^{3}+\frac{1}{2} t^{6} \tag{1}\\
& \varphi_{3}=\int_{0}^{t} 3 s^{2}\left(1+s^{3}+\frac{1}{2} s^{6}\right) d s=t^{3}+\frac{1}{2} t^{6}+\frac{1}{2 \cdot 3} t^{9}
\end{align*}
$$

From (1), we can assume $\varphi_{n}(n \geq 1)$ has the form:

$$
\begin{equation*}
\varphi_{n}=\sum_{k=1}^{n} \frac{\left(t^{3}\right)^{k}}{k!} \tag{2}
\end{equation*}
$$

and then use mathematical induction to prove it. For $n=1$, (2) is satisfied. Now assume for $n=k$, (2) is satisfied, we must show for $n=k+1$, (2) is also true.

$$
\begin{align*}
\varphi_{k+1} & =\int_{0}^{t} 3 s^{2}\left(1+\sum_{k=1}^{n} \frac{\left(s^{3}\right)^{k}}{k!}\right) d s \\
& =\int_{0}^{t}\left(3 s^{2}+\sum_{k=1}^{n} \frac{3 s^{3 k+2}}{k!}\right) d s \tag{3}\\
& =t^{3}+\frac{1}{2} t^{6}+\frac{1}{2 \cdot 3} t^{9}+\ldots+\frac{t^{3 k+3}}{(k+1)!} \\
& =\sum_{k=1}^{n+1} \frac{\left(t^{3}\right)^{k}}{k!}
\end{align*}
$$

which completes our assumption. Next we want to show the convergence of φ_{n}. By ratio test, we have

$$
\begin{equation*}
\left|\frac{\frac{\left(t^{3}\right)^{k+1}}{(k+1)!}}{\frac{\left(t^{3}\right)^{k}}{k!}}\right|=\frac{t^{3}}{k+1} \rightarrow 0 \tag{4}
\end{equation*}
$$

when $k \rightarrow \infty$. Hence, the Picard's sequence converges and the limit function $\varphi(t)=e^{t^{3}}-1$, which is the sol to the O.D.E.

